Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Clin Exp Med ; 24(1): 17, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280023

RESUMO

Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare genetic disorder that presents clinically as a primary immunodeficiency. Clinical presentation of APDS includes severe, recurrent infections, lymphoproliferation, lymphoma, and other cancers, autoimmunity and enteropathy. Autosomal dominant variants in two independent genes have been demonstrated to cause APDS. Pathogenic variants in PIK3CD and PIK3R1, both of which encode components of the PI3-kinase, have been identified in subjects with APDS. APDS1 is caused by gain of function variants in the PIK3CD gene, while loss of function variants in PIK3R1 have been reported to cause APDS2. We conducted a review of the medical literature and identified 256 individuals who had a molecular diagnosis for APDS as well as age at last report; 193 individuals with APDS1 and 63 with APDS2. Despite available treatments, survival for individuals with APDS appears to be shortened from the average lifespan. A Kaplan-Meier survival analysis for APDS showed the conditional survival rate at the age of 20 years was 87%, age of 30 years was 74%, and ages of 40 and 50 years were 68%. Review of causes of death showed that the most common cause of death was lymphoma, followed by complications from HSCT. The overall mortality rate for HSCT in APDS1 and APDS2 cases was 15.6%, while the mortality rate for lymphoma was 47.6%. This survival and mortality data illustrate that new treatments are needed to mitigate the risk of death from lymphoma and other cancers as well as infection. These analyses based on real-world evidence gathered from the medical literature comprise the largest study of survival and mortality for APDS to date.


Assuntos
Síndromes de Imunodeficiência , Linfoma , Neoplasias , Doenças da Imunodeficiência Primária , Adulto , Humanos , Adulto Jovem , Classe I de Fosfatidilinositol 3-Quinases/genética , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Mutação , Neoplasias/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases , Taxa de Sobrevida , Pessoa de Meia-Idade
2.
NPJ Microgravity ; 8(1): 58, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550172

RESUMO

Knowledge transfer among research disciplines can lead to substantial research progress. At first glance, astronaut health and rare diseases may be seen as having little common ground for such an exchange. However, deleterious health conditions linked to human space exploration may well be considered as a narrow sub-category of rare diseases. Here, we compare and contrast research and healthcare in the contexts of rare diseases and space health and identify common barriers and avenues of improvement. The prevalent genetic basis of most rare disorders contrasts sharply with the occupational considerations required to sustain human health in space. Nevertheless small sample sizes and large knowledge gaps in natural history are examples of the parallel challenges for research and clinical care in the context of both rare diseases and space health. The two areas also face the simultaneous challenges of evidence scarcity and the pressure to deliver therapeutic solutions, mandating expeditious translation of research knowledge into clinical care. Sharing best practices between these fields, including increasing participant involvement in all stages of research and ethical sharing of standardized data, has the potential to contribute to humankind's efforts to explore ever further into space while caring for people on Earth in a more inclusive fashion.

3.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617047

RESUMO

Mitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders caused by impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2. Here, we report 5 probands from 4 families who presented with ptosis and ophthalmoplegia as well as other clinical manifestations and multiple mtDNA deletions in muscle. We identified 3 RRM1 loss-of-function variants, including a dominant catalytic site variant (NP_001024.1: p.N427K) and 2 homozygous recessive variants at p.R381, which has evolutionarily conserved interactions with the specificity site. Atomistic molecular dynamics simulations indicate mechanisms by which RRM1 variants affect protein structure. Cultured primary skin fibroblasts of probands manifested mtDNA depletion under cycling conditions, indicating impaired de novo nucleotide synthesis. Fibroblasts also exhibited aberrant nucleoside diphosphate and dNTP pools and mtDNA ribonucleotide incorporation. Our data reveal that primary RRM1 deficiency and, by extension, impaired de novo nucleotide synthesis are causes of MDDS.


Assuntos
Doenças Mitocondriais , Ribonucleotídeo Redutases , Replicação do DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Doenças Mitocondriais/genética , Nucleosídeos , Nucleotídeos/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
4.
Clin Genet ; 101(2): 214-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34741306

RESUMO

Congenital heart defects (CHD) are the most commonly occurring birth defect and can occur in isolation or with additional clinical features comprising a genetic syndrome. Autosomal dominant variants in TAB2 are recognized by the American Heart Association as causing nonsyndromic CHD, however, emerging data point to additional, extra-cardiac features associated with TAB2 variants. We identified 15 newly reported individuals with pathogenic TAB2 variants and reviewed an additional 24 subjects with TAB2 variants in the literature. Analysis showed 64% (25/39) of individuals with disease resulting from TAB2 single nucleotide variants (SNV) had syndromic CHD or adult-onset cardiomyopathy with one or more extra-cardiac features. The most commonly co-occurring features with CHD or cardiomyopathy were facial dysmorphism, skeletal and connective tissue defects and most subjects with TAB2 variants present as a connective tissue disorder. Notably, 53% (8/15) of our cohort displayed developmental delay and we suspect this may be a previously unappreciated feature of TAB2 disease. We describe the largest cohort of subjects with TAB2 SNV and show that in addition to heart disease, features across multiple systems are present in most TAB2 cases. In light of our findings, we recommend that TAB2 be included on the list of genes that cause syndromic CHD, adult-onset cardiomyopathy, and connective tissue disorder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/genética , Mutação , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Alelos , Biópsia , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Humanos , Lactente , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
5.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34656997

RESUMO

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Assuntos
Proteínas Mitocondriais , Ubiquinona , Linhagem Celular , Criança , Humanos , Recém-Nascido , Proteínas Mitocondriais/genética , Neuroimagem , Fenótipo , Ubiquinona/genética , Ubiquinona/metabolismo
6.
Nat Commun ; 12(1): 1135, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602924

RESUMO

While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Mitocôndrias/genética , Mutação/genética , Doenças do Sistema Nervoso/genética , Transcrição Gênica , Adolescente , Adulto , Criança , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/química , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Doenças do Sistema Nervoso/patologia , Fosforilação Oxidativa , Linhagem , Domínios Proteicos , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
7.
Am J Hum Genet ; 107(2): 364-373, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32707086

RESUMO

We report bi-allelic pathogenic HPDL variants as a cause of a progressive, pediatric-onset spastic movement disorder with variable clinical presentation. The single-exon gene HPDL encodes a protein of unknown function with sequence similarity to 4-hydroxyphenylpyruvate dioxygenase. Exome sequencing studies in 13 families revealed bi-allelic HPDL variants in each of the 17 individuals affected with this clinically heterogeneous autosomal-recessive neurological disorder. HPDL levels were significantly reduced in fibroblast cell lines derived from more severely affected individuals, indicating the identified HPDL variants resulted in the loss of HPDL protein. Clinical presentation ranged from severe, neonatal-onset neurodevelopmental delay with neuroimaging findings resembling mitochondrial encephalopathy to milder manifestation of adolescent-onset, isolated hereditary spastic paraplegia. All affected individuals developed spasticity predominantly of the lower limbs over the course of the disease. We demonstrated through bioinformatic and cellular studies that HPDL has a mitochondrial localization signal and consequently localizes to mitochondria suggesting a putative role in mitochondrial metabolism. Taken together, these genetic, bioinformatic, and functional studies demonstrate HPDL is a mitochondrial protein, the loss of which causes a clinically variable form of pediatric-onset spastic movement disorder.


Assuntos
Encefalopatias/genética , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Criança , Feminino , Humanos , Masculino , Mitocôndrias/genética , Linhagem , Fenótipo , Adulto Jovem
8.
Mitochondrion ; 51: 68-78, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31923470

RESUMO

LONP1 is an ATP-dependent protease and chaperone that plays multiple vital roles in mitochondria. LONP1 is essential for mitochondrial homeostasis due to its role in maintenance of the mitochondrial genome and its central role in regulating mitochondrial processes such as oxidative phosphorylation, mitophagy, and heme biosynthesis. Bi-allelic LONP1 mutations have been reported to cause a constellation of clinical presentations. We report a patient heterozygous for a de novo mutation in LONP1: c.901C>T,p.R301W presenting as a neonate with seizures, encephalopathy, pachygyria and microcephaly. Assays of respiratory chain activity in muscle showed complex II-III function at 8% of control. Functional studies in patient fibroblasts showed a signature of dysfunction that included significant decreases in known proteolytic targets of LONP1 (TFAM, PINK1, phospho-PDH E1α) as well as loss of mitochondrial ribosome subunits MRPL44 and MRPL11 with concomitant decreased activity and level of protein subunits of oxidative phosphorylation complexes I and IV. These results indicate excessive LONP1 proteolytic activity and a loss of LONP1 chaperone activity. Further, we demonstrate that the LONP1 N-terminal domain is involved in hexamer stability of LONP1 and that the ability to make conformational changes is necessary for LONP1 to regulate proper functioning of both its proteolytic and chaperone activities.


Assuntos
Proteases Dependentes de ATP/genética , Mitocôndrias/patologia , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Proteólise , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Feminino , Heme/biossíntese , Humanos , Recém-Nascido , Mitocôndrias/genética , Mitofagia/genética , Fosforilação Oxidativa , Convulsões/genética
9.
Am J Hum Genet ; 106(1): 92-101, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866046

RESUMO

Leigh syndrome is one of the most common neurological phenotypes observed in pediatric mitochondrial disease presentations. It is characterized by symmetrical lesions found on neuroimaging in the basal ganglia, thalamus, and brainstem and by a loss of motor skills and delayed developmental milestones. Genetic diagnosis of Leigh syndrome is complicated on account of the vast genetic heterogeneity with >75 candidate disease-associated genes having been reported to date. Candidate genes are still emerging, being identified when "omics" tools (genomics, proteomics, and transcriptomics) are applied to manipulated cell lines and cohorts of clinically characterized individuals who lack a genetic diagnosis. NDUFAF8 is one such protein; it has been found to interact with the well-characterized complex I (CI) assembly factor NDUFAF5 in a large-scale protein-protein interaction screen. Diagnostic next-generation sequencing has identified three unrelated pediatric subjects, each with a clinical diagnosis of Leigh syndrome, who harbor bi-allelic pathogenic variants in NDUFAF8. These variants include a recurrent splicing variant that was initially overlooked due to its deep-intronic location. Subject fibroblasts were found to express a complex I deficiency, and lentiviral transduction with wild-type NDUFAF8-cDNA ameliorated both the assembly defect and the biochemical deficiency. Complexome profiling of subject fibroblasts demonstrated a complex I assembly defect, and the stalled assembly intermediates corroborate the role of NDUFAF8 in early complex I assembly. This report serves to expand the genetic heterogeneity associated with Leigh syndrome and to validate the clinical utility of orphan protein characterization. We also highlight the importance of evaluating intronic sequence when a single, definitively pathogenic variant is identified during diagnostic testing.


Assuntos
Complexo I de Transporte de Elétrons/deficiência , Fibroblastos/patologia , Doença de Leigh/etiologia , Doenças Mitocondriais/etiologia , Proteínas Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Alelos , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/patologia , Linhagem , Fenótipo
10.
Neuron ; 104(4): 665-679.e8, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31585809

RESUMO

In humans, disruption of nonsense-mediated decay (NMD) has been associated with neurodevelopmental disorders (NDDs) such as autism spectrum disorder and intellectual disability. However, the mechanism by which deficient NMD leads to neurodevelopmental dysfunction remains unknown, preventing development of targeted therapies. Here we identified novel protein-coding UPF2 (UP-Frameshift 2) variants in humans with NDD, including speech and language deficits. In parallel, we found that mice lacking Upf2 in the forebrain (Upf2 fb-KO mice) show impaired NMD, memory deficits, abnormal long-term potentiation (LTP), and social and communication deficits. Surprisingly, Upf2 fb-KO mice exhibit elevated expression of immune genes and brain inflammation. More importantly, treatment with two FDA-approved anti-inflammatory drugs reduced brain inflammation, restored LTP and long-term memory, and reversed social and communication deficits. Collectively, our findings indicate that impaired UPF2-dependent NMD leads to neurodevelopmental dysfunction and suggest that anti-inflammatory agents may prove effective for treatment of disorders with impaired NMD.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Animais , Criança , Drosophila , Feminino , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo
11.
Mol Genet Metab ; 128(4): 463-469, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31540697

RESUMO

Panthothenate kinase-associated neurodegeneration (PKAN, OMIM 234200), is an inborn is an autosomal recessive inborn error of metabolism caused by pathogenic variants in PANK2. PANK2 encodes the enzyme pantothenate kinase 2 (EC 2.7.1.33), an essential regulatory enzyme in CoA biosynthesis. Clinical presentation includes dystonia, rigidity, bradykinesia, dysarthria, pigmentary retinopathy and dementia with variable age of onset ranging from childhood to adulthood. In order to provide an accurate incidence estimate of PKAN, we conducted a systematic review of the literature and databases for pathogenic mutations and constructed a bioinformatic profile for pathogenic missense variants in PANK2. We then studied the gnomAD cohort of ~140,000 unrelated adults from global populations to determine the allele frequency of the variants in PANK2 reported pathogenic for PKAN and for those additional variants identified in gnomAD that met bioinformatics criteria for being potentially pathogenic. Incidence was estimated based on three different models using the allele frequencies of pathogenic PKAN variants with or without those bioinformatically determined to be potentially pathogenic. Disease incidence calculations showed PKAN incidence ranging from 1:396,006 in Europeans, 1:1,526,982 in Africans, 1:480,826 in Latino, 1:523,551 in East Asians and 1:531,118 in South Asians. These results indicate PKAN is expected to occur in approximately 2 of every 1 million live births globally outside of Africa, and has a much lower incidence 1 in 1.5 million live births in the African population.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase/epidemiologia , Alelos , Substituição de Aminoácidos , Biologia Computacional/métodos , Bases de Dados Genéticas , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Humanos , Incidência , Neurodegeneração Associada a Pantotenato-Quinase/diagnóstico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Vigilância da População
12.
Hum Mutat ; 40(12): 2414-2429, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31448843

RESUMO

PARN encodes poly(A)-specific ribonuclease. Biallelic and monoallelic PARN variants are associated with Hoyeraal-Hreidarsson syndrome/dyskeratosis congenita and idiopathic pulmonary fibrosis (IPF), respectively. The molecular features associated with incomplete penetrance of PARN-associated IPF have not been described. We report a family with a rare missense, p.Y91C, and a novel insertion, p.(I274*), PARN variant. We found PARN p.Y91C had reduced deadenylase activity and the p.(I274*) transcript was depleted. Detailed analysis of the consequences of these variants revealed that, while PARN protein was lowest in the severely affected biallelic child who had the shortest telomeres, it was also reduced in his mother with the p.(I274*) variant but telomeres at the 50th percentile. Increased adenylation of telomerase RNA, human telomerase RNA, and certain small nucleolar RNAs, and impaired ribosomal RNA maturation were observed in cells derived from the severely affected biallelic carrier, but not in the other, less affected biallelic carrier, who had less severely shortened telomeres, nor in the monoallelic carriers who were unaffected and had telomeres ranging from the 1st to the 50th percentiles. We identified hsa-miR-202-5p as a potential negative regulator of PARN. We propose one or more genetic modifiers influence the impact of PARN variants on its targets and this underlies incomplete penetrance of PARN-associated disease.


Assuntos
Disceratose Congênita/genética , Exorribonucleases/genética , Retardo do Crescimento Fetal/genética , Deficiência Intelectual/genética , MicroRNAs/genética , Microcefalia/genética , Mutagênese Insercional , Mutação de Sentido Incorreto , Adolescente , Linhagem Celular , Pré-Escolar , Regulação para Baixo , Exorribonucleases/metabolismo , Feminino , Humanos , Masculino , Linhagem , Penetrância , Encurtamento do Telômero
13.
Hum Mutat ; 40(10): 1731-1748, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31045291

RESUMO

Mutations in either the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA metabolism, including ELAC2. The ELAC2 gene codes for the mitochondrial RNase Z, responsible for endonucleolytic cleavage of the 3' ends of mitochondrial pre-tRNAs. Here, we report the identification of 16 novel ELAC2 variants in individuals presenting with mitochondrial respiratory chain deficiency, hypertrophic cardiomyopathy (HCM), and lactic acidosis. We provide evidence for the pathogenicity of the novel missense variants by studying the RNase Z activity in an in vitro system. We also modeled the residues affected by a missense mutation in solved RNase Z structures, providing insight into enzyme structure and function. Finally, we show that primary fibroblasts from the affected individuals have elevated levels of unprocessed mitochondrial RNA precursors. Our study thus broadly confirms the correlation of ELAC2 variants with severe infantile-onset forms of HCM and mitochondrial respiratory chain dysfunction. One rare missense variant associated with the occurrence of prostate cancer (p.Arg781His) impairs the mitochondrial RNase Z activity of ELAC2, suggesting a functional link between tumorigenesis and mitochondrial RNA metabolism.


Assuntos
Cardiomiopatia Hipertrófica/genética , Genes Mitocondriais , Predisposição Genética para Doença , Mutação , Proteínas de Neoplasias/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Alelos , Substituição de Aminoácidos , Biomarcadores , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/terapia , Estudos de Coortes , Ativação Enzimática , Feminino , Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Lactente , Cinética , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fenótipo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Sci Rep ; 9(1): 5108, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30911037

RESUMO

Primary mitochondrial dysfunction is an under-appreciated cause of cardiomyopathy, especially when cardiac symptoms are the unique or prevalent manifestation of disease. Here, we report an unusual presentation of mitochondrial cardiomyopathy, with dilated phenotype and pathologic evidence of biventricular fibro-adipose replacement, in a 33-year old woman who underwent cardiac transplant. Whole exome sequencing revealed two novel compound heterozygous variants in the TSFM gene, coding for the mitochondrial translation elongation factor EF-Ts. This protein participates in the elongation step of mitochondrial translation by binding and stabilizing the translation elongation factor Tu (EF-Tu). Bioinformatics analysis predicted a destabilization of the EF-Ts variants complex with EF-Tu, in agreement with the dramatic steady-state level reduction of both proteins in the clinically affected myocardium, which demonstrated a combined respiratory chain enzyme deficiency. In patient fibroblasts, the decrease of EF-Ts was paralleled by up-regulation of EF-Tu and induction of genes involved in mitochondrial biogenesis, along with increased expression of respiratory chain subunits and normal oxygen consumption rate. Our report extends the current picture of morphologic phenotypes associated with mitochondrial cardiomyopathies and confirms the heart as a main target of TSFM dysfunction. The compensatory response detected in patient fibroblasts might explain the tissue-specific expression of TSFM-associated disease.


Assuntos
Cardiomiopatias/etiologia , Cardiomiopatias/genética , Proteínas Mitocondriais/genética , Fatores de Alongamento de Peptídeos/genética , Humanos , Masculino , Mutação/genética , Fator Tu de Elongação de Peptídeos/genética , Ligação Proteica , Biossíntese de Proteínas
15.
Ann Clin Transl Neurol ; 6(3): 515-524, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30911575

RESUMO

Objectives: Mitochondrial methionyl-tRNA formyltransferase (MTFMT) is required for the initiation of translation and elongation of mitochondrial protein synthesis. Pathogenic variants in MTFMT have been associated with Leigh syndrome (LS) and mitochondrial multiple respiratory chain deficiencies. We sought to elucidate the spectrum of clinical, neuroradiological and molecular genetic findings of patients with bi-allelic pathogenic variants in MTFMT. Methods: Retrospective cohort study combining new cases and previously published cases. Results: Thirty-eight patients with pathogenic variants in MTFMT were identified, including eight new cases. The median age of presentation was 14 months (range: birth to 17 years, interquartile range [IQR] 4.5 years), with developmental delay and motor symptoms being the most frequent initial manifestation. Twenty-nine percent of the patients survived into adulthood. MRI headings in MTFMT pathogenic variants included symmetrical basal ganglia changes (62%), periventricular and subcortical white matter abnormalities (55%), and brainstem lesions (48%). Isolated complex I and combined respiratory chain deficiencies were identified in 31% and 59% of the cases, respectively. Reduction of the mitochondrial complex I and complex IV subunits was identified in the fibroblasts (13/13). Sixteen pathogenic variants were identified, of which c.626C>T was the most common. Seventy-four percent of the patients were alive at their last clinical review (median 6.8 years, range: 14 months to 31 years, IQR 14.5 years). Interpretation: Patients that harbour pathogenic variants in MTFMT have a milder clinical phenotype and disease progression compared to LS caused by other nuclear defects. Fibroblasts may preclude the need for muscle biopsy, to prove causality of any novel variant.


Assuntos
Variação Estrutural do Genoma/genética , Hidroximetil e Formil Transferases/genética , Doença de Leigh/genética , Doença de Leigh/patologia , Adolescente , Biópsia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais , Mutação , Prognóstico , Estudos Retrospectivos
16.
Front Genet ; 10: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804983

RESUMO

Mitochondrial DNA depletion syndromes (MTDPS) are a group of rare genetic disorders caused by defects in multiple genes involved in mitochondrial DNA (mtDNA) maintenance. Among those, FBXL4 mutations result in the encephalomyopathic mtDNA depletion syndrome 13 (MTDPS13; OMIM #615471), which commonly presents as a combination of failure to thrive, neurodevelopmental delays, encephalopathy, hypotonia, and persistent lactic acidosis. We report here the case of a Lebanese infant presenting to us with profound neurodevelopmental delays, generalized hypotonia, facial dysmorphic features, and extreme emaciation. Whole-exome sequencing (WES) showed the girl as having MTDPS13 with an underlying FBXL4 missense mutation that has been previously reported only twice in unrelated individuals (c.1303C > T). Comprehensive literature search marked our patient as being the 94th case of MTDPS13 reported to date worldwide, and the first from Lebanon. We include at the end of this report a comprehensive mutation review table of all the pathological FBXL4 mutations reported in the literature, using it to highlight, for the first time, a possible founder effect of Arab origins to the disorder, being most prevalent in patients of Arab descent as shown in our mutation table. Finally, we provide a direct comparison of the disorder's clinical manifestations across two unrelated patients harboring the same disease-causing mutation as our patient, emphasizing the remarkable variability in genotype-to-phenotype correlation characteristic of the disease.

17.
JIMD Rep ; 43: 13-17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29480352

RESUMO

Metabolomic profiling is an emerging technology in the clinical setting with immediate diagnostic potential for the population of patients with Inborn Errors of Metabolism. We present the metabolomics profile of two ABAT deficiency patients both pre- and posttreatment with flumazenil. ABAT deficiency, also known as GABA-transaminase deficiency, is caused by recessive mutations in the gene ABAT and leads to encephalopathy of variable severity with hypersomnolence, hypotonia, hypomyelination, and seizures. Through metabolomics screening of multiple patient tissues, we identify 2-pyrrolidinone as a biomarker for GABA that is informative in plasma, urine, and CSF. These data will enable noninvasive diagnostic testing for the population of patients with disorders of GABA metabolism.

18.
Am J Hum Genet ; 103(5): 817-825, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401461

RESUMO

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.


Assuntos
Ataxia Cerebelar/genética , Deficiências do Desenvolvimento/genética , Glicosídeo Hidrolases/genética , Mutação/genética , Doenças Neurodegenerativas/genética , ADP-Ribosilação/genética , Adenosina Difosfato Ribose/genética , Adolescente , Alelos , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Lactente , Masculino , Malformações do Sistema Nervoso/genética , Processamento de Proteína Pós-Traducional/genética
19.
EMBO Mol Med ; 10(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30201738

RESUMO

OXA1, the mitochondrial member of the YidC/Alb3/Oxa1 membrane protein insertase family, is required for the assembly of oxidative phosphorylation complexes IV and V in yeast. However, depletion of human OXA1 (OXA1L) was previously reported to impair assembly of complexes I and V only. We report a patient presenting with severe encephalopathy, hypotonia and developmental delay who died at 5 years showing complex IV deficiency in skeletal muscle. Whole exome sequencing identified biallelic OXA1L variants (c.500_507dup, p.(Ser170Glnfs*18) and c.620G>T, p.(Cys207Phe)) that segregated with disease. Patient muscle and fibroblasts showed decreased OXA1L and subunits of complexes IV and V. Crucially, expression of wild-type human OXA1L in patient fibroblasts rescued the complex IV and V defects. Targeted depletion of OXA1L in human cells or Drosophila melanogaster caused defects in the assembly of complexes I, IV and V, consistent with patient data. Immunoprecipitation of OXA1L revealed the enrichment of mtDNA-encoded subunits of complexes I, IV and V. Our data verify the pathogenicity of these OXA1L variants and demonstrate that OXA1L is required for the assembly of multiple respiratory chain complexes.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/genética , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação/genética , Proteínas Nucleares/genética , Fosforilação Oxidativa , Sequência de Aminoácidos , Animais , Sequência de Bases , Pré-Escolar , DNA Mitocondrial/genética , Drosophila , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Evolução Fatal , Fibroblastos/metabolismo , Células HEK293 , Humanos , Lactente , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Neuroimagem , Proteínas Nucleares/química , Linhagem
20.
Am J Med Genet A ; 176(5): 1115-1127, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575569

RESUMO

Short-chain enoyl-CoA hydratase (SCEH or ECHS1) deficiency is a rare inborn error of metabolism caused by biallelic mutations in the gene ECHS1 (OMIM 602292). Clinical presentation includes infantile-onset severe developmental delay, regression, seizures, elevated lactate, and brain MRI abnormalities consistent with Leigh syndrome (LS). Characteristic abnormal biochemical findings are secondary to dysfunction of valine metabolism. We describe four patients from two consanguineous families (one Pakistani and one Irish Traveler), who presented in infancy with LS. Urine organic acid analysis by GC/MS showed increased levels of erythro-2,3-dihydroxy-2-methylbutyrate and 3-methylglutaconate (3-MGC). Increased urine excretion of methacrylyl-CoA and acryloyl-CoA related metabolites analyzed by LC-MS/MS, were suggestive of SCEH deficiency; this was confirmed in patient fibroblasts. Both families were shown to harbor homozygous pathogenic variants in the ECHS1 gene; a c.476A > G (p.Gln159Arg) ECHS1variant in the Pakistani family and a c.538A > G, p.(Thr180Ala) ECHS1 variant in the Irish Traveler family. The c.538A > G, p.(Thr180Ala) ECHS1 variant was postulated to represent a Canadian founder mutation, but we present SNP genotyping data to support Irish ancestry of this variant with a haplotype common to the previously reported Canadian patients and our Irish Traveler family. The presence of detectable erythro-2,3-dihydroxy-2-methylbutyrate is a nonspecific marker on urine organic acid analysis but this finding, together with increased excretion of 3-MGC, elevated plasma lactate, and normal acylcarnitine profile in patients with a Leigh-like presentation should prompt consideration of a diagnosis of SCEH deficiency and genetic analysis of ECHS1. ECHS1 deficiency can be added to the list of conditions with 3-MGA.


Assuntos
Biomarcadores , Enoil-CoA Hidratase/deficiência , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Sequência de Aminoácidos , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Cromatografia Líquida , Análise Mutacional de DNA , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Ativação Enzimática , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Linhagem , Espectrometria de Massas em Tandem , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...